Well-posedness and Regularity for Distribution Dependent SPDEs with Singular Drifts

Xing Huang

Tianjin University

Joint Work with Yulin Song November 26, 2022 The 17th Workshop on Markov Processes and Related Topics

2 Main Results and Proofs

Consider the following SDE (called stochastic McKean-Vlasov equation/ mean field equation/ distribution dependent equation):

 $\mathrm{d}X_t = b(X_t, \mathscr{L}_{X_t})\mathrm{d}t + \sigma(X_t, \mathscr{L}_{X_t})\mathrm{d}W_t,$

where \mathscr{L}_{X_t} denotes the law of X_t .

Introduction

Some Known Results for DDS(P)DEs:

- Existence and Uniqueness of Solutions: Funaki(ZWVG,'84), Gradham(SPA,'92), Dawson,Vaillancourt(NDEA,'95), Kotelenez, Kurtz(PTRF,'10), Huang, Wang(SPA,'19), Röckner, Zhang(Bernoulli,'20), Li, Li, Xie(JSP,'20)
- Nonlinear F-P: Huang, Röckner, Wang(DCDS,'19), Barbu, Röckner (SIAM-JMA,'18;AOP,'20), Röckner,Xie,Zhang(PTRF,'20)
- Regularity: Wang(SPA,'18), Crisan, McMurray(PTRF,'18), Baños(AIHP,'18), S.(JTP,'20,CPAA,'21+), Röckner, Zhang(Bernoulli '20), Ren, Wang(JDE,'19), Huang, Wang(SPA,'19)
- Functional inequalities: Guillin, Liu, Wu, Zhang(AAP,'20+), Ren, Wang (NLA,'20)
- Ergodicity, Propagation of chaos: Guillin, Liu, Wu, Zhang(AAP,'20+), Ren, Wang (NLA,'20).
- J. Bao, C. Deng, X. Fan, W. Liu, J. Shao, J. Wang, S. Zhang and so on.

Let $(\mathbb{H}, \langle, \rangle, |\cdot|)$ and $(\overline{\mathbb{H}}, \langle, \rangle_{\overline{\mathbb{H}}}, |\cdot|_{\overline{\mathbb{H}}})$ be two separable Hilbert spaces, and $\{W_t\}_{t\geq 0}$ be a cylindrical Brownian motion on $\overline{\mathbb{H}}$ with respect to a complete filteration probability space $(\Omega, \mathscr{F}, \{\mathscr{F}_t\}_{t\geq 0}, \mathbb{P})$.

Let \mathcal{P} be the set of all probability measures on \mathbb{H} equipped with the weak topology. Consider the following semi-linear distribution dependent SDEs on \mathbb{H} :

 $dX_t = \{AX_t + b_t(X_t, \mathscr{L}_{X_t})\}dt + Q_t(X_t, \mathscr{L}_{X_t})dW_t,$ (1)

where $(A, \mathcal{D}(A))$ is a negative definite self-adjoint operator on \mathbb{H} , $b : \mathbb{R}_+ \times \mathbb{H} \times \mathcal{P} \to \mathbb{H}$ and $Q : \mathbb{R}_+ \times \mathbb{H} \times \mathcal{P} \to \mathcal{L}(\overline{\mathbb{H}}; \mathbb{H})$ are measurable.

Aims of this talk:

 \clubsuit The existence and uniqueness of strong and weak solutions

& Wang's Log-Harnack inequality, Harnack inequality and shift Harnack inequality

Define

$$\mathcal{P}_2 := \left\{ \mu \in \mathcal{P} : \mu(|\cdot|^2) := \int_{\mathbb{H}} |x|^2 \mu(\mathrm{d} x) < \infty \right\},$$

which is a Polish space under the Wasserstein distance

$$\mathbb{W}_2(\mu_1,\mu_2):=\inf_{\pi\in\mathfrak{C}(\mu_1,\mu_2)}\left(\int_{\mathbb{H} imes\mathbb{H}}|x-y|^2\pi(\mathrm{d} x,\mathrm{d} y)
ight)^{rac{1}{2}}.$$

where $\mathfrak{C}(\mu_1, \mu_2)$ is the set of all couplings for μ_1 and μ_2 .

Definition 1

A continuous $\{\mathscr{F}_t\}$ -adapted process $\{X_t\}_{t\geq 0}$ is called a mild solution, if \mathbb{P} -a.s

$$X_{t} = e^{At}X_{0} + \int_{0}^{t} e^{A(t-s)} b_{s}(X_{s}, \mathscr{L}_{X_{s}}) ds + \int_{0}^{t} e^{A(t-s)} Q_{s}(X_{s}, \mathscr{L}_{X_{s}}) dW_{s}, \quad t \ge 0.$$
(2)

Moreover, if $\mathbb{E}|X_t|^2 < \infty$ for any $t \ge 0$, then the solution is said in \mathcal{P}_2 . Equ. (1) is called strongly well-posed in \mathcal{P}_2 , if for any \mathscr{F}_0 -measurable random variable X_0 with $\mathcal{L}_{X_0} \in \mathcal{P}_2$, there exists a unique mild solution in \mathcal{P}_2 .

Definition 2

- Equ.(1) is said to have weak uniqueness in \mathcal{P}_2 , if any two weak solutions in \mathcal{P}_2 of (1) from common initial distribution are equal in law. Furthermore, we call weak well-posedness in \mathcal{P}_2 for Equ.(1) holds, if it has a weak solution from any initial distribution and has weak uniqueness in \mathcal{P}_2 .

Denote

$$\mathscr{D} = \left\{ \phi : \mathbb{R}_+ \rightarrow \mathbb{R}_+ | \phi^2 \text{ is concave and } \phi \text{ is increasing with } \int_0^1 s^{-1} \phi(s) \mathrm{d}s < \infty \right\}$$

There exists an increasing function $K : (0, \infty) \to (0, \infty)$ such that A, b and Q satisfy the following conditions.

- (a1) For some $\varepsilon \in (0, 1)$, $(-A)^{\varepsilon-1}$ is of trace class.
- (a2) The operator $Q : [0, \infty) \times \mathbb{H} \times \mathcal{P} \to \mathcal{L}(\bar{\mathbb{H}}; \mathbb{H}))$ is continuous and for each $t \ge 0$ and $\mu \in \mathcal{P}$, and $Q_t(\cdot, \mu)$ is in $C^2(\mathbb{H}; \mathcal{L}(\bar{\mathbb{H}}; \mathbb{H}))$ such that

 $\sup_{(t,x,\mu)\in[0,T]\times\mathbb{H}\times\mathcal{P}_2}\left(\|Q_t(x,\mu)\|+\|\nabla Q_t(x,\mu)\|+\|\nabla^2 Q_t(x,\mu)\|\right)\leq K(T),$

Meanwhile, $(Q_t Q_t^*)(x, \mu)$ is invertible for each $(t, x, \mu) \in [0, \infty) \times \mathbb{H} \times \mathcal{P}_2$ with

$$\sup_{(t,x,\mu)\in[0,T]\times\mathbb{H}\times\mathcal{P}}\|(Q_tQ_t^*)(x,\mu)^{-1}\|\leq K(T).$$

Moreover, for any $x \in \mathbb{H}$, $t \geq 0$ and $\mu \in \mathcal{P}_2$, it holds

 $\lim_{n\to\infty} \|Q_t(x,\mu)-Q_t(\pi_n x,\mu)\|_{\mathrm{HS}}^2=0.$

In addition, for any T > 0, it holds

 $\sup_{(t,x)\in[0,T]\times\mathbb{H}}\|Q_t(x,\mu)-Q_t(x,\nu)\|_{\mathrm{HS}}^2\leq K(T)\mathbb{W}_2(\mu,\nu)^2, \ \mu,\nu\in\mathcal{P}_2.$

(a3) For any $t \in [0, T]$, b_t is continuous in $\mathbb{H} \times \mathcal{P}$. The function $t \mapsto \sup_{(x,\mu) \in \mathbb{H} \times \mathcal{P}_2} |b_t(x,\mu)|$ is locally bounded, and there exists $\phi \in \mathscr{D}$ such that

 $|b_t(x,\mu)-b_t(y,\nu)| \leq \phi(|x-y|) + \mathcal{K}(t)\mathbb{W}_2(\mu,\nu), \quad t \geq 0, x, y \in \mathbb{H}, \mu, \nu \in \mathcal{P}_2.$

Theorem 1[X.Huang, S., NLA, '21]

Assume (a1). If $\sup_{(x,\mu)\in\mathbb{H}\times\mathcal{P}}(|b_t(x,\mu)| + ||Q_t(x,\mu)||)$ is locally bounded with respect to t and b_t , Q_t are continuous in $\mathbb{H}\times\mathcal{P}$ for each $t \ge 0$, then for any fixed T > 0, and $\mu_0 \in \mathcal{P}$, Equ. (1) has a weak solution up to time T with initial distribution μ_0 .

Outline of Proof:

Step 1. For each $n \ge 1$, let $\eta_n(s) = \lfloor \frac{s}{T/n} \rfloor \frac{T}{n}$, where $\lfloor \cdot \rfloor$ stands for the integer part. Let X_0 be an \mathscr{F}_0 -measurable random variable with $\mathscr{L}_{X_0} = \mu_0$. For $t \in [0, T]$, define

$$X_{t}^{n} = e^{At}X_{0} + \int_{0}^{t} e^{A(t-s)}b_{s}(X_{\eta_{n}(s)}^{n}, \mathscr{L}_{X_{\eta_{n}(s)}^{n}}) \mathrm{d}s + \int_{0}^{t} e^{A(t-s)}Q_{s}(X_{\eta_{n}(s)}^{n}, \mathscr{L}_{X_{\eta_{n}(s)}^{n}}) \mathrm{d}W_{s}.$$

Step 2. Prove $\{\mathscr{L}_{X^n}\}_{n\geq 1}$ is tight in the space of probability measures on $C([0, T]; \mathbb{H})$. Step 3. By the Skorohod representation theorem and the martingale representation theorem, there exists a complete filtered probability space $(\hat{\Omega}, \hat{\mathscr{F}}, \{\hat{\mathscr{F}}_t\}, \hat{\mathbb{P}})$, a cylindrical Brownian motion \tilde{W} and a continuous process \tilde{X} such that

$$\tilde{X}_t = e^{At}\tilde{X}_0 + \int_0^t e^{A(t-s)}b_s(\tilde{X}_s, \mathscr{L}_{\tilde{X}_s}|_{\mathbb{P}}) \mathrm{d}s + \int_0^t e^{A(t-s)}Q_s(\tilde{X}_s, \mathscr{L}_{\tilde{X}_s}|_{\mathbb{P}}) \mathrm{d}\tilde{\tilde{W}}_s, \ t \in [0, T].$$

Theorem 2 [X.Huang, S., NLA, '21]

Assume (a1)-(a3). Then the following assertions hold.

(1) Equ.(1) has weak well-posedness in \mathcal{P}_2 and there exists a constant C(T) > 0 such that

$$\int_0^T \mathbb{W}_2(P_t^*\mu_0, P_t^*\nu_0)^2 \mathrm{d} t \leq C(T) \mathbb{W}_2(\mu_0, \nu_0)^2, \ \ \mu_0, \nu_0 \in \mathcal{P}_2.$$

(2) The strong well-posedness in P₂ holds for Equ.(1). Moreover, there exists an increasing function C : [0,∞) → [0,∞) such that for any two solutions X_t and Y_t to Equ.(1), it holds

$$\int_0^T \mathbb{E}|X_t - Y_t|^2 \mathrm{d}t \leq C(T)\mathbb{E}|X_0 - Y_0|^2, \quad T \geq 0.$$

Modified Yamada-Watanabe Principle

Consider DDSDEs on \mathbb{R}^d ,

$$dX_t = b_t(X_t, \mathscr{L}_{X_t})dt + \sigma_t(X_t, \mathscr{L}_{X_t})dW_t$$
(3)

Lemma¹

Assume that (3) has a weak solution $\{\overline{X}_t\}_{t \in [0,T]}$ under probability $\overline{\mathbb{P}}$. If the SDE

 $\mathrm{d}X_t = b_t(X_t, \mathscr{L}_{\overline{X}_t}|\overline{\mathbb{P}})\mathrm{d}t + \sigma_t(X_t, \mathscr{L}_{\overline{X}_t}|\overline{\mathbb{P}})\mathrm{d}W_t$

has strong uniqueness for some initial value X_0 with $\mathscr{L}_{X_0} = \mathscr{L}_{\overline{X}_0}|\overline{\mathbb{P}}$, then (3) has a strong solution starting at X_0 . If moreover (3) has strong uniqueness for any initial value X_0 with $\mathscr{L}_{X_0} = \mathscr{L}_{\overline{X}_0}|\overline{\mathbb{P}}$, then it is weakly well-posed for the initial distribution $\mathscr{L}_{\overline{X}_0}|\overline{\mathbb{P}}$.

1. X. Huang, F.-Y. Wang, McKean-Vlasov SDEs with drifts discontinuous under Wasserstein distance., Discrete Contin. Dyn. Syst. 41(2021), no.4, 1667-1679.

Xing Huang (TJU)

DDSPDEs with Singular Drifts

Apr. 25, 2021 17 / 30

Outline of Proof:

For any $\mu \in C([0, T], \mathcal{P}_2)$ and $X_0 \in L^2(\Omega \to \mathbb{H}; \mathscr{F}_0)$, the following SPDE

$$\mathrm{d}X_t = \{AX_t + b_t(X_t, \mu_t)\}\mathrm{d}t + Q_t(X_t, \mu_t)\mathrm{d}W_t \tag{4}$$

has a unique mild solution. Due to Theorem 1 and the modified Yamada-Watanabe principle, we only need to prove the strong uniqueness of DDSPDEs.

For $\nu \in C([0, T], \mathcal{P}_2)$ and $Y_0 \in L^2(\Omega \to \mathbb{H}; \mathscr{F}_0)$, Y_t solve (4) with (μ, X_0) replaced by (ν, Y_0) . By the finite-dimensional approximation and Zvonkin's transform, for λ large enough it holds,

$$\int_0^l e^{-2\lambda s} \mathbb{E} |X_s - Y_s|^2 \mathrm{d} s \leq \frac{1}{2} \int_0^l e^{-2\lambda s} \mathbb{W}_2(\mu_s, \nu_s)^2 \mathrm{d} s + c(T) \mathbb{E} |X_0 - Y_0|^2, \quad l \in [0, T].$$

For two solution \hat{X}_t and \tilde{X}_t with common initial value $\xi \in L^2(\Omega \to \mathbb{H}; \mathscr{F}_0)$,

$$\int_0^{\mathsf{T}} e^{-2\lambda s} \mathbb{E} |\hat{X}_s - \tilde{X}_s|^2 \mathrm{d}s \leq \frac{1}{2} \int_0^{\mathsf{T}} e^{-2\lambda s} \mathbb{W}_2(\mathscr{L}_{\hat{X}_s}, \mathscr{L}_{\tilde{X}_s})^2 \mathrm{d}s$$

Theorem 3 [X.Huang, S., NLA, '21]

Assume (a1)-(a3) and that $Q_t(x, \mu)$ does not depend on μ . Then the following assertions hold.

(1) There exists an increasing function $C:[0,\infty) \to (0,\infty)$ such that for any T>0, the log-Harnack inequality

$$P_T \log f(
u_0) \leq \log P_T f(\mu_0) + rac{C(T)}{T \wedge 1} \mathbb{W}_2(\mu_0,
u_0)^2, \ \mu_0,
u_0 \in \mathcal{P}_2$$

holds for strictly positive function $f\in \mathscr{B}_b(\mathbb{H}).$ Consequently, we have

$$2\|P_{T}^{*}\mu_{0}-P_{T}^{*}\nu_{0}\|_{\mathrm{TV}}^{2}\leq \mathrm{Ent}(P_{T}^{*}\mu_{0}|P_{T}^{*}\nu_{0})\leq \frac{C(T)}{T\wedge 1}\mathbb{W}_{2}(\mu_{0},\nu_{0})^{2}.$$

Wang's log-Harnack Inequality and Harnack Inequality

Cont.

(2) If $Q_t(x,\mu)$ does not depend on (x,μ) , the Harnack inequality with power p > 1 holds for non-negative $f \in \mathscr{B}_b(\mathbb{H})$ and any T > 0, i.e.

$$(P_{T}f(\mu_{0}))^{p} \leq P_{T}f^{p}(\nu_{0})\left(\mathbb{E}\exp\left\{\frac{p}{2(p-1)^{2}}\Phi(T)\right\}\right)^{p-1}, \quad \mu_{0}, \nu_{0} \in \mathcal{P}_{2}$$

where

$$\Phi(T) = K(T) \left(4T\phi^2 \left(|X_0 - Y_0| \right) + C(T) \mathbb{W}_2(\mu_0, \nu_0)^2 + 2 \frac{|X_0 - Y_0|^2}{T} \right),$$

with $\mathscr{L}_{X_0} = \mu_0$ and $\mathscr{L}_{Y_0} = \nu_0$. Consequently, $P_T^* \mu_0$ is equivalent to $P_T^* \nu_0$ and it holds

$$P_{\mathcal{T}}\left\{\left(\frac{\mathrm{d}P_{\mathcal{T}}^{*}\mu_{0}}{\mathrm{d}P_{\mathcal{T}}^{*}\nu_{0}}\right)^{\frac{1}{p-1}}\right\}(\mu_{0}) \leq \mathbb{E}\exp\left\{\frac{p}{2(p-1)^{2}}\Phi(\mathcal{T})\right\}.$$

Proof of Log-Harnack inequality

Outline of Proof: Let $\mu_t = P_t^* \mu_0$ and $\nu_t = P_t^* \nu_0$. Let X_t be the solution to SPDEs

$$dX_t = AX_t dt + b_t(X_t, \mu_t) dt + Q_t(X_t) dW_t$$
(5)

with $\mathscr{L}_{X_0} = \mu_0$. Define

$$\gamma_s = Q_s^* (Q_s Q_s^*)^{-1} (X_s) [b_s(X_s, \mu_s) - b_s(X_s, \nu_s)], \qquad ar W_t = W_t + \int_0^t \gamma_s \mathrm{d}s,$$

and

$$R_T = \exp\left\{-\int_0^T \langle \gamma_s, \mathrm{d} W_s
angle - rac{1}{2}\int_0^T |\gamma_s|^2 \mathrm{d} s
ight\}.$$

By (a2)-(a3) and Girsanov's theorem, $\{\overline{W}_s\}_{s\in[0,T]}$ is a cylindrical Brownian motion under $\mathbb{Q}_T = \mathbb{R}_T \mathbb{P}$.

Let $\overline{\mu}_t$ be the distribution of X_t under \mathbb{Q}_T , then \mathbb{P} -a.s.

$$\frac{\mathrm{d}\bar{\mu}_{\tau}}{\mathrm{d}\mu_{\tau}}(X_{\tau}) = \mathbb{E}(R_{\tau}|X_{\tau}).$$

~ +

Next, consider the following equation on $(\Omega, \mathscr{F}, \mathbb{Q}_T)$

$$dY_t = AY_t dt + b(Y_t, \nu_t) dt + Q_t(Y_t) d\bar{W}_t$$
(6)

If $Y_0 = X_0$, then Y = X. If $\mathscr{L}_{Y_0} = \nu_0$, then due to the weak uniqueness of solutions, $\mathscr{L}_{Y_t}|_{Q_T} = \nu_t$. By Log-Harnack inequality in distribution independent SPDEs, we have

$$\operatorname{Ent}(\nu_{\mathcal{T}}|\overline{\mu}_{\mathcal{T}}) \leq \frac{\mathcal{C}}{\mathcal{T} \wedge 1} \mathbb{W}_{2}(\mu_{0}, \nu_{0})^{2}.$$

By direct calculus,

$$\begin{split} P_{T} \log f(\nu_{0}) &= \mu_{T} \left(\frac{\mathrm{d}\bar{\mu}_{T}}{\mathrm{d}\mu_{T}} \frac{\mathrm{d}\nu_{T}}{\mathrm{d}\bar{\mu}_{T}} \log f \right) \\ &\leq \log P_{T} f(\mu_{0}) + \mu_{T} \left(\frac{\mathrm{d}\bar{\mu}_{T}}{\mathrm{d}\mu_{T}} \frac{\mathrm{d}\nu_{T}}{\mathrm{d}\bar{\mu}_{T}} \log \left(\frac{\mathrm{d}\bar{\mu}_{T}}{\mathrm{d}\mu_{T}} \frac{\mathrm{d}\nu_{T}}{\mathrm{d}\bar{\mu}_{T}} \right) \right) \\ &= \log P_{T} f(\mu_{0}) + \bar{\mu}_{T} \left(\frac{\mathrm{d}\nu_{T}}{\mathrm{d}\bar{\mu}_{T}} \log \frac{\mathrm{d}\bar{\mu}_{T}}{\mathrm{d}\mu_{T}} \right) + \bar{\mu}_{T} \left(\frac{\mathrm{d}\nu_{T}}{\mathrm{d}\bar{\mu}_{T}} \log \frac{\mathrm{d}\nu_{T}}{\mathrm{d}\bar{\mu}_{T}} \right) \\ &\leq \log P_{T} f(\mu_{0}) + \log \bar{\mu}_{T} \left(\frac{\mathrm{d}\bar{\mu}_{T}}{\mathrm{d}\mu_{T}} \right) + 2\bar{\mu}_{T} \left(\frac{\mathrm{d}\nu_{T}}{\mathrm{d}\bar{\mu}_{T}} \log \frac{\mathrm{d}\nu_{T}}{\mathrm{d}\bar{\mu}_{T}} \right) \\ &\leq \log P_{T} f(\mu_{0}) + \log \mathbb{E} R_{T}^{2} + 2\bar{\mu}_{T} \left(\frac{\mathrm{d}\nu_{T}}{\mathrm{d}\bar{\mu}_{T}} \log \frac{\mathrm{d}\nu_{T}}{\mathrm{d}\bar{\mu}_{T}} \right) \\ &\leq \log P_{T} f(\mu_{0}) + \frac{C(T)}{T \wedge 1} \mathbb{W}_{2}(\mu_{0},\nu_{0})^{2} \end{split}$$

Recall $\mu_t = P_t^* \mu_0$ and $\nu_t = P_t^* \nu_0$. Let X_t, Y_t solve the equations respectively $dX_t = AX_t dt + b_t(X_t, \mu_t) dt + Q_t dW_t,$ $dY_t = AY_t dt + b_t(X_t, \mu_t) dt + Q_t dW_t + e^{At} \frac{X_0 - Y_0}{T} dt$ with $\mathscr{L}_{X_0} = \mu_0$ and $\mathscr{L}_{Y_0} = \nu_0$.

Theorem 4 [X.Huang, S., NLA,'21]

Assume (a1)-(a3). If $Q_t(x, \mu)$ does not depend on x, then for any T > 0, $\mu_0 \in \mathcal{P}_2$, $y \in \mathbb{H}$ and non-negative $f \in \mathscr{B}_b(\mathbb{H})$, it holds

$$(P_{\mathcal{T}}f(\mu_0))^p \leq P_{\mathcal{T}}(f^p(e^{A\mathcal{T}}y+\cdot))(\mu_0)\exp\Big[\frac{p}{(p-1)}K(\mathcal{T})\Big(\mathcal{T}\phi^2(|y|)+\frac{|y|^2}{\mathcal{T}}\Big)\Big].$$

Recall $\mu_t = P_t^* \mu_0$. Let X_t, Y_t solve the equations

$$\begin{split} \mathrm{d}X_t &= AX_t \mathrm{d}t + b_t(X_t, \mu_t) \mathrm{d}t + Q_t(\mu_t) \mathrm{d}W_t, \quad \mathscr{L}_{X_0} = \mu_0, \\ \mathrm{d}Y_t &= AY_t \mathrm{d}t + b_t(X_t, \mu_t) \mathrm{d}t + Q_t(\mu_t) \mathrm{d}W_t + e^{At} \frac{y}{\tau} \mathrm{d}t, \quad Y_0 = X_0. \end{split}$$

Then we have $Y_t = X_t + e^{At} \frac{ty}{T}$. In particular, $Y_T = X_T + e^{AT}y$.

Remarks

• Assume $Q_t(x,\mu) = Q_t(x)$. Strong well-posedness¹: condition on the drift in the measure components can be extended to $\|\mu - \nu\|_{var,\theta} + \mathbb{W}_{\theta}(\mu,\nu)$ for some $\theta \ge 1$. Note that $\mathbb{W}_k(\mu,\nu)^{k\vee 1} \le c(k) \|\mu - \nu\|_{var,k}, k > 0$ and $\|\mu - \nu\|_{var,k_1} \le (2 - \frac{k_1}{k_2}) \|\mu - \nu\|_{var,k_2}, 0 < k_1 \le k_2$. Log-Harnack inequality²: \mathbb{W}_2 can be extended to $\mathbb{W}_k + \mathbb{W}_2$ some $k \in (0, 1)$.

$$P_T \log f(
u_0) \leq \log P_T f(\mu_0) + rac{\mathcal{C}(T)}{T \wedge 1} \mathbb{W}_2(\mu_0,
u_0)^2, \ \mu_0,
u_0 \in \mathcal{P}_2$$

1. F.-Y. Wang, Distribution dependent reflecting stochastic differential equations, arXiv:2106.12737.

2. X. Huang, F.-Y. Wang, Log-Harnack Inequality and Bismut Formula for Singular McKean-Vlasov SDEs, arXiv:2207.11536.

Xing Huang (TJU)

Remarks

• Assume $Q_t(x,\mu) = Q_t(\mu)$.

Strong well-posedness: condition on the drift in the measure components can be extended to $\|\mu - \nu\|_{var,\theta} + \mathbb{W}_{\theta}(\mu,\nu)$ for some $\theta \geq 1$.

Log-Harnack inequality¹: *b* is not bounded and

$$|b_t(x,\mu) - b_t(x,\nu)| \le C[|x-y| + \mathbb{W}_2(\mu,\nu)], \ \ K \le QQ^* \le K^{-1}.$$

Then

$$P_T \log f(\nu_0) \leq \log P_T f(\mu_0) + \frac{C(T)}{T \wedge 1} \mathbb{W}_2(\mu_0, \nu_0)^2, \ \mu_0, \nu_0 \in \mathcal{P}_2$$

Idea: $QQ^* = K + [QQ^* - K]$. However, singular drift can be not dealt with.

1. X. Huang, F.-Y. Wang, Regularities and Exponential Ergodicity in Entropy for SDEs Driven by Distribution Dependent Noise, arXiv:2209.14619.

Xing Huang (TJU)

DDSPDEs with Singular Drifts

Apr. 25, 2021 27 / 30

 Assume Q_t(x, μ) = Q_t(x, μ). In finite case, Strong well-posedness¹: condition on drift in the measure components can be extended to ||μ − ν||_{var,θ} + W_θ(μ, ν) for some θ ≥ 1. Log-Harnack inequality: Open problem, even in finite case.

1. X. Huang, F.-Y. Wang, Singular McKean-Vlasov (reflecting) SDEs with distribution dependent noise. J. Math. Anal. Appl. 514 (2022), no. 1, Paper No. 126301, 21 pp.

References

N.U. Ahmen, X. Ding, A semilinear McKean-Vlasov stochastic evolution equation in Hilbert space, Stochastic Process. Appl. 60(1995) 65-85.

X. Huang, F.-Y. Wang, *McKean-Vlasov SDEs with Drifts Discontinuous under Wasserstein Distance*, arXiv:2002.06877.

- M. Röckner, X. Zhang, *Well-posedness of distribution dependent SDEs with singular drifts,* to appear in Bernoulli, arXiv:1809.02216.
- F.-Y. Wang, Harnack Inequality and Applications for Stochastic Partial Differential Equations, Springer, New York, 2013.

F.-Y. Wang, Gradient estimate and applications for SDEs in Hilbert space with multiplicative noise and Dini continuous drift, J. Differential Equations 260(2016), 2792-2829.

F.-Y. Wang, T. Zhang, *Log-Harnack inequalities for semilinear SPDE with strongly multiplicative noise*, Stoch. Proc. Appl. 124(2014), 1261-1274.

Thank You for Your Attention !