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Introduction

Consider the following SDE (called stochastic McKean-Vlasov equation/
mean field equation/ distribution dependent equation ):

dXt = b(Xt, Dgxt)dt + O'(Xt, fxt)th,

where Zx, denotes the law of X;.
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Introduction

Some Known Results for DDS(P)DEs:

Existence and Uniqueness of Solutions: Funaki(ZWVG,'84),
Gradham(SPA,'92), Dawson,Vaillancourt(NDEA,'95), Kotelenez,
Kurtz(PTRF,'10), Huang, Wang(SPA,'19), Réckner, Zhang(Bernoulli,’20),
Li, Li, Xie(JSP,"20)

Nonlinear F-P: Huang, Réckner, Wang(DCDS,'19), Barbu, Rdckner
(SIAM-JMA,’18;A0P,20), Réckner,Xie,Zhang(PTRF,'20)

Regularity: Wang(SPA,'18), Crisan, McMurray(PTRF,'18),
Bafios(AIHP,'18), S.(JTP,'20,CPAA,'21+), Rockner, Zhang(Bernoulli '20),
Ren, Wang(JDE,'19), Huang, Wang(SPA,'19)

Functional inequalities: Guillin, Liu, Wu, Zhang(AAP,'20+), Ren, Wang
(NLA,"20)

Ergodicity, Propagation of chaos: Guillin, Liu, Wu, Zhang(AAP,'20+), Ren,
Wang (NLA,'20).

J. Bao, C. Deng, X. Fan, W. Liu, J. Shao, J. Wang, S. Zhang and so on.
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Distribution Dependent SPDEs

Let (H, (,),[-|) and (I, (, )z, | - |m) be two separable Hilbert spaces, and
{W:,}+>0 be a cylindrical Brownian motion on H with respect to a complete
filteration probability space (2, %, {.Z:}t>0,P).

Let P be the set of all probability measures on H equipped with the weak
topology. Consider the following semi-linear distribution dependent SDEs on H:

dXt - {AXt + bt(thXt)}dt + Q,_»()(hcht)dv‘/t7 (1)

where (A, D(A)) is a negative definite self-adjoint operator on H,
b:Ry xHxP —Hand Q: R, x Hx P — L(H;H) are measurable.

Aims of this talk:
& The existence and uniqueness of strong and weak solutions

& Wang's Log-Harnack inequality, Harnack inequality and shift Harnack inequality
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Define
Poim{nePiu P = [ IxPutax) <o f
H

which is a Polish space under the Wasserstein distance

1

Wa(unopa) = inf (/ |xy2w(dx,dy)),
H x H

TEC(p1,p2)

where €(u1, ) is the set of all couplings for 1 and ps.
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Definition of Solutions

Definition 1

A continuous {.%;}-adapted process {X;}+>0 is called a mild solution, if P-a.s
t t
X; = e Xo+ / A=) by(Xs, £, )ds+ / ) Q(X;, L, )AWs, t>0. (2)
0 0

Moreover, if IE|Xt|2 < oo for any t > 0, then the solution is said in P,. Equ. (1)
is called strongly well-posed in P, if for any .#g-measurable random variable Xj
with Lx, € P», there exists a unique mild solution in P;.
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Definition of Solutions

@ A couple (X;, W;);>0 is called a weak solution to Equ. (1), if W is a
cylindrical Brownian motion with respect to a complete filtered probability
space (Q,.7,P; {.%;}+>0), and (2) holds for (X, W;);>0 in place of
(Xe, We)e>0. Moreover, if ‘zfqh@ € P,, the weak solution is called in P.

@ Equ.(1) is said to have weak uniqueness in Ps, if any two weak solutions in
P of (1) from common initial distribution are equal in law. Furthermore, we
call weak well-posedness in P, for Equ.(1) holds, if it has a weak solution
from any initial distribution and has weak uniqueness in P;.
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Denote

1
9 = {d) : R, =R |¢? is concave and ¢ is increasing with /Oslqﬁ(s)ds < o0
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There exists an increasing function K : (0, 00) — (0,00) such that A, b and Q
satisfy the following conditions.

(al) For some € € (0,1), (—A)*~ 1 is of trace class.
(a2) The operator Q : [0,00) x H x P — L(H; [)) is continuous and for each
t >0and u € P, and Q- 1) is in C?(H; £(IH; H)) such that

sup (1@ Il + IV Qulx, )| + V2 @i, )] ) < K(T),
(t,x,n)E€[0, TIxHX P,

Meanwhile, (Q:Q;)(x, i) is invertible for each (t,x, u) € [0,00) x H X P
with

sup 1(Q: Q) (x, 1) ~HI < K(T).

(t,x,p)€[0, TIxHXP
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Moreover, for any x € H, t > 0 and p € P,, it holds

1 Qe(x, 1) — Qe(mnx, 1) ||2ig = 0.

lim
n—o0
In addition, for any T > 0, it holds

sup [ Qe(x, 1) — Qe(x, v)llfrs < K(T)Wa(p,v)?, p,v € Pa
(£.X)€[0, T]xH

(a3) For any t € [0, T], b; is continuous in H x P. The function

t—  sup  |bt(x, )| is locally bounded, and there exists ¢ € & such
(X,H)GHX’PQ

that

|bt(X7 :u’) - bt(y7y)| < ¢(|X _yl) + K(t)Wz(p’7y)7 t> O7X7y € H?/JHV € P2'
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Weak Solutions

Theorem 1[X.Huang, S., NLA, '21]

Assume (al). If sup(, ,yemxp (|be(x, )| + || Qe(x, p)]) is locally bounded with
respect to t and b;, Q; are continuous in H x P for each t > 0, then for any fixed
T >0, and po € P, Equ. (1) has a weak solution up to time T with initial
distribution pyg.
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Weak Solutions

Outline of Proof:

Step 1. For each n > 1, let ny(s) = L%/,,J% where |-| stands for the integer part. Let
Xo be an Fp-measurable random variable with .#x, = po. For t € [0, T], define

t t
X =e"X +/ (X, L )ds +/ QX (o) L AW,
0 n 0 n

Step 2. Prove {%xn}n>1 is tight in the space of probability measures on C([0, T]; H).

Step 3. By the Skorohod representation theorem and the martmgale representation
theorem, there exists a complete filtered probability space (Q,.#,{%:},P), a cylindrical

Brownian motion W and a continuous process X such that

xt:eAfxﬁ/ Al bs(thXshP)ds—i—/ A9 0K, L [5)AWs, t € [0, T].
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Existence and Uniqueness of Solutions

Theorem 2 [X.Huang, S., NLA, '21]

Assume (al)-(a3). Then the following assertions hold.

(1) Equ.(1) has weak well-posedness in PP, and there exists a constant
C(T) > 0 such that

.
/ Wo(Pj 1o, Pfvp)?dt < C(T)Wa(po, 10)?,  tio, vo € Pa.
0

(2) The strong well-posedness in P, holds for Equ.(1). Moreover, there exists an
increasing function C : [0, 00) — [0, 00) such that for any two solutions X;
and Y; to Equ.(1), it holds

,
/ E|X; — Y:]2dt < C(T)E|X — Yo|*>, T >0.
0
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Modified Yamada-Watanabe Principle

Consider DDSDEs on RY,

dXt = bt(Xt7 gxr)dt + a.t(Xta Q%Xr)d Wt (3)

Lemma

Assume that (3) has a weak solution {X¢}c[o, 7] under probability P. If the SDE
dXt = bt(Xt, gyt ‘@)dt + O't(Xt, gyjﬁ)d Wt

has strong uniqueness for some initial value Xo with Zx, = %%, |P, then (3) has a
strong solution starting at Xp. If moreover (3) has strong uniqueness for any
initial value Xo with Zx, = %% |P, then it is weakly well-posed for the initial

distribution Zx |P.

1. X. Huang, F.-Y. Wang, McKean-Vlasov SDEs with drifts discontinuous under
Wasserstein distance., Discrete Contin. Dyn. Syst. 41(2021), no.4, 1667-1679.
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Existence and Uniqueness of Solutions

Outline of Proof:
For any € C([0, T],P2) and Xy € L*(Q — H; %), the following SPDE
dXt = {AXt —+ bt(Xt, ﬂt)}dt —+ (?1:()(1:7 /Lt)th (4)

has a unique mild solution. Due to Theorem 1 and the modified Yamada-Watanabe
principle, we only need to prove the strong uniqueness of DDSPDEs.

For v € C([0, T],P2) and Y, € L*(Q — H; %), Y; solve (4) with (i, Xo) replaced by
(v, Yo). By the finite-dimensional approximation and Zvonkin's transform, for X large
enough it holds,

! 1 /
/ e E|X, — Yo’ds < 5/ e MWy (s, vs)2ds + c(T)E|Xo — Yo|?, 1€]0, T].
0 0

For two solution X: and X; with common initial value £ € L3(Q — H;.%),

. T
/ e_QAsEP“(S - Xs|2d5 < %/ e_2A5W2($5<5735<5)2d5
. 0
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Wang's log-Harnack Inequality and Harnack Inequality

Theorem 3 [X.Huang, S., NLA, '21]

Assume (al)-(a3) and that Q:(x, i) does not depend on .. Then the following
assertions hold.

(1) There exists an increasing function C : [0, 00) — (0, 00) such that for any
T > 0, the log-Harnack inequality

c(T
Prlog f(v0) < log Prf (o) + VW0, 1), o, v0 € Py

holds for strictly positive function f € %,(H). Consequently, we have

2]1P310 ~ Polfey < Bnt(PsolPiro) < S YW (o, o).
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Wang's log-Harnack Inequality and Harnack Inequality

(2) If Q:(x, ) does not depend on (x, ), the Harnack inequality with power
p > 1 holds for non-negative f € %,(H) and any T > 0, i.e.

(Prf(10))° < Prf®(v0) (Eexp {Mcb(r)})pl, 10, v0 € P,
where

¢(T) N K(T) (4T¢2 (|X0 B Y°|) + C(T)W2(/L0, 1/0)2 ol 2M> )

T

with Zx, = po and %y, = 1. Consequently, P71 is equivalent to P 1q
and it holds

1

| (352) " oo zoen sy}
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Proof of Log-Harnack inequality

Outline of Proof: Let put = P{ o and v = P{1p. Let X; be the solution to SPDEs
dXt = AXtdt + [3[—()(1—7 /,Lt)dt + Qt(Xt)th (5)

with Zx, = po. Define

e = QE(QeQ) T (X)[bs(Xes i) — bs(Xesvs)],  We = W, + / ~ods,
0

T 1 /7
Rt = exp {—/ (s, dWs) — 5/ |’ys\2ds} .
0 0

By (a2)-(a3) and Girsanov's theorem, {W}scpo,7) is a cylindrical Brownian motion
under Qr = RrP.

Let fir be the distribution of X; under Qr, then P-a.s.

dMT

dHT(XT) E(Rr|X7).
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Proof of Log-Harnack inequality

Next, consider the following equation on (2, .%,Qr)

dyt = AYtdt + b( Yt, Ut)dt + Qt(yt)th (6)

If Yo = Xo, then Y = X. If %y, = 10, then due to the weak uniqueness of solutions,
Zv.|Q1 = v:. By Log-Harnack inequality in distribution independent SPDEs, we have
Ent(vr(ir) <

c 2
ﬁWZ(MO7 VO) .
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Proof of Log-Harnack inequality

By direct calculus,

PT|ng(l/0) =uT duT d]/T ogf
dpr dinr

diaT d d d
<tog Pr(ue) + ey (S G2 vog (7427 ) )
_ dv d _ dv d
:|OgPTf(,uo)+/.LT <d_77—— |o dZT) + AT <dﬁT| d::—_)

d_ dVT dl/T
<log P7f (o) + lo +20 " log —
g Prf(uo) +log fir (du ) T<dur gdur)

<log Prf(uo) + log ERT + 2fit ]ZT | gd—IfT
dn dor
c(m)

< —_ 7
log Prf (o) + =+ 1W2(u07'/0)
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Proof of Harnack inequality

Recall p1r = P{ o and vy = Pfug. Let Xi, Y: solve the equations respectively

d.)<1L = AXtdt =+ bt(Xt, ,U/t)dt + Qtth,
At Xo — Yo

dYt = Aytdt —+ b(»()(t7 ‘LLt)dt + Qtth + e #dt

with fxo = Uo and gyo = 1.
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Shift Harnack Inequality

Theorem 4 [X.Huang, S., NLA,'21]

Assume (al)-(a3). If Q:(x, ) does not depend on x, then for any T > 0,
to € P>, y € H and non-negative f € %B,(H), it holds

(Prf(uo))"sPr(fp(e”y+-))(uo)exp[(pfl) K(T)(TeX(yl) + i Y5,

Recall 11 = Piuo. Let Xy, Y; solve the equations

dXe = AXedt + be(Xe, pe)dt + Qe(pe)dWe, ZLx, = po,
dYt = Aytdt + bt(Xt,,U/t)dt + Qt(/f(‘t)th + eAt%dt, YO = XO.

Then we have Y; = X; + eAtt—%’. In particular, Yr = X7+ eATy.
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o Assume Q:(x, 1) = Qe(x).
Strong well-posedness’: condition on the drift in the measure
components can be extended to || — v||var,0 + Wo(p, ) for some
0>1.
Note that Wy (u, v)*Vt < c(k)||pt — v||vark, k > 0 and
l— V||var,k1 <(2- %)HN - V||var,k2’0 < ki < ko.
Log-Harnack inequality’: W5 can be extended to Wy + W, some
k € (0,1).

c(T
Pt log f(1vg) < log Prf(po) + T(Aiwz(uo,l/o){ o, o € P2

1. F.-Y. Wang, Distribution dependent reflecting stochastic differential equations,
arXiv:2106.12737.

2. X. Huang, F.-Y. Wang, Log-Harnack Inequality and Bismut Formula for Singular
McKean-Vlasov SDEs, arXiv:2207.11536.

Xing Huang ( TJU) DDSPDEs with Singular Drifts Apr. 25, 2021 26 / 30



@ Assume Q:(x, 1) = Q¢(1).
Strong well-posedness: condition on the drift in the measure
components can be extended to || — v/||var,0 + Wo(p, ) for some
0>1.
Log-Harnack inequality': b is not bounded and

|be(x, 1) = be(x, )| < Cllx — y[+Wa(p,v)], K<QQ"< K™

Then
C(T
Prlog f(vo) < log Prf(po) + T(Ain(uo, 10)%, Ho,vo € P2
ldea: QQ* = K + [QQ* — K]. However, singular drift can be not
dealt with.

1. X. Huang, F.-Y. Wang, Regularities and Exponential Ergodicity in Entropy for SDEs
Driven by Distribution Dependent Noise, arXiv:2209.14619.
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@ Assume Q:(x, ) = Q¢(x, ).
In finite case, Strong well-posedness': condition on drift in the

measure components can be extended to ||p — v||vare + Wo(p, v) for
some 0 > 1.

Log-Harnack inequality: Open problem, even in finite case.

1. X. Huang, F.-Y. Wang, Singular McKean-Vlasov (reflecting) SDEs with distribution
dependent noise. J. Math. Anal. Appl. 514 (2022), no. 1, Paper No. 126301, 21 pp.
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Thank You for Your Attention !
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