Well-posedness and Regularity for Distribution Dependent SPDEs with Singular Drifts

Xing Huang

Tianjin University

Joint Work with Yulin Song November 26, 2022 The 17th Workshop on Markov Processes and Related Topics

Consider the following SDE (called stochastic McKean-Vlasov equation/ mean field equation/ distribution dependent equation):

 $dX_t = b(X_t, \mathscr{L}_{X_t})dt + \sigma(X_t, \mathscr{L}_{X_t})dW_t,$

where \mathscr{L}_{X_t} denotes the law of X_t .

Introduction

Some Known Results for DDS(P)DEs:

- Existence and Uniqueness of Solutions: Funaki(ZWVG,'84), Gradham(SPA,'92), Dawson,Vaillancourt(NDEA,'95), Kotelenez, Kurtz(PTRF,'10), Huang, Wang(SPA,'19), Röckner, Zhang(Bernoulli,'20), Li, Li, Xie(JSP,'20)
- \bullet Nonlinear F-P: Huang, Röckner, Wang(DCDS,'19), Barbu, Röckner (SIAM-JMA,'18;AOP,'20), Röckner, Xie, Zhang(PTRF,'20)
- Regularity: Wang(SPA,'18), Crisan, McMurray(PTRF,'18), Baños(AIHP,'18), S.(JTP,'20,CPAA,'21+), Röckner, Zhang(Bernoulli '20), Ren, Wang(JDE,'19), Huang, Wang(SPA,'19)
- Functional inequalities: Guillin, Liu, Wu, Zhang(AAP,'20+), Ren, Wang (NLA,'20)
- \bullet Ergodicity, Propagation of chaos: Guillin, Liu, Wu, Zhang(AAP,'20+), Ren, Wang (NLA,'20).
- J. Bao, C. Deng, X. Fan, W. Liu, J. Shao, J. Wang, S. Zhang and so on.

Let $(\mathbb{H},\langle,\rangle, |\cdot|)$ and $(\mathbb{\bar{H}},\langle,\rangle_{\mathbb{H}}, |\cdot|_{\mathbb{H}})$ be two separable Hilbert spaces, and $\{W_t\}_{t\geq 0}$ be a cylindrical Brownian motion on $\bar{\mathbb{H}}$ with respect to a complete filteration probability space $(\Omega, \mathscr{F}, \{\mathscr{F}_t\}_{t>0}, \mathbb{P})$.

Let P be the set of all probability measures on $\mathbb H$ equipped with the weak topology. Consider the following semi-linear distribution dependent SDEs on H:

> $dX_t = \{AX_t + b_t(X_t, \mathscr{L}_{X_t})\}dt + Q_t(X_t, \mathscr{L}_{X_t})dW_t$ (1)

where $(A, D(A))$ is a negative definite self-adjoint operator on H, $b: \mathbb{R}_+ \times \mathbb{H} \times \mathcal{P} \to \mathbb{H}$ and $Q: \mathbb{R}_+ \times \mathbb{H} \times \mathcal{P} \to \mathcal{L}(\mathbb{\bar{H}}; \mathbb{H})$ are measurable.

Aims of this talk:

♣ The existence and uniqueness of strong and weak solutions

♣ Wang's Log-Harnack inequality, Harnack inequality and shift Harnack inequality

Define

$$
\mathcal{P}_2:=\left\{\mu\in\mathcal{P}:\mu(|\cdot|^2):=\int_{\mathbb{H}}|x|^2\mu(\mathrm{d} x)<\infty\right\},
$$

which is a Polish space under the Wasserstein distance

$$
\mathbb{W}_2(\mu_1,\mu_2):=\inf_{\pi\in\mathfrak{C}(\mu_1,\mu_2)}\left(\int_{\mathbb{H}\times\mathbb{H}}|x-y|^2\pi(\mathrm{d} x,\mathrm{d} y)\right)^{\frac{1}{2}},
$$

where $\mathfrak{C}(\mu_1, \mu_2)$ is the set of all couplings for μ_1 and μ_2 .

Definition 1

A continuous $\{\mathscr{F}_t\}$ -adapted process $\{X_t\}_{t>0}$ is called a mild solution, if \mathbb{P} -a.s

$$
X_t = e^{At}X_0 + \int_0^t e^{A(t-s)}b_s(X_s, \mathscr{L}_{X_s})ds + \int_0^t e^{A(t-s)}Q_s(X_s, \mathscr{L}_{X_s})dW_s, \ \ t \ge 0. \ \ (2)
$$

Moreover, if $\mathbb{E}|X_t|^2<\infty$ for any $t\geq 0$, then the solution is said in $\mathcal{P}_2.$ Equ. (1) is called strongly well-posed in \mathcal{P}_2 , if for any \mathcal{F}_0 -measurable random variable X_0 with $\mathcal{L}_{X_0} \in \mathcal{P}_2$, there exists a unique mild solution in \mathcal{P}_2 .

Definition 2

- A couple $(\tilde{X}_t, \tilde{W}_t)_{t\geq 0}$ is called a weak solution to Equ. (1) , if \tilde{W} is a cylindrical Brownian motion with respect to a complete filtered probability space $(\tilde\Omega,\tilde{\mathscr F},\tilde{\mathbb P};\{\tilde{\mathscr F}_t\}_{t\ge0})$, and [\(2\)](#page-8-0) holds for $(\tilde X_t,\tilde W_t)_{t\ge0}$ in place of $(X_t,W_t)_{t\geq0}$. Moreover, if $\mathscr{L}_{\tilde X_t}|_{\tilde{\mathbb{P}}}\in\mathcal{P}_2$, the weak solution is called in \mathcal{P}_2 .
- **Equ.[\(1\)](#page-5-0)** is said to have weak uniqueness in \mathcal{P}_2 , if any two weak solutions in \mathcal{P}_2 of [\(1\)](#page-5-0) from common initial distribution are equal in law. Furthermore, we call weak well-posedness in \mathcal{P}_2 for Equ.[\(1\)](#page-5-0) holds, if it has a weak solution from any initial distribution and has weak uniqueness in \mathcal{P}_2 .

Denote

$$
\mathscr{D}=\Big\{\phi:\mathbb{R}_+{\rightarrow}\mathbb{R}_+|\phi^2\text{ is concave and }\phi\text{ is increasing with }\int_0^1\!\!s^{-1}\phi(s)\mathrm{d} s<\infty
$$

There exists an increasing function $K : (0, \infty) \to (0, \infty)$ such that A, b and Q satisfy the following conditions.

- (a1) For some $\varepsilon \in (0,1)$, $(-A)^{\varepsilon-1}$ is of trace class.
- (a2) The operator $Q : [0, \infty) \times \mathbb{H} \times \mathcal{P} \to \mathcal{L}(\bar{\mathbb{H}}; \mathbb{H})$) is continuous and for each $t\geq 0$ and $\mu\in\mathcal{P},$ and $\overline{\mathcal{Q}_t(\cdot,\mu)}$ is in $C^2(\mathbb{H};\mathcal{L}(\bar{\mathbb{H}};\mathbb{H}))$ such that

sup $(t,x,\mu){\in}[0,T]{\times}\mathbb{H}{\times}\mathcal{P}_2$ $\left(\|Q_t(x,\mu)\| + \|\nabla Q_t(x,\mu)\| + \|\nabla^2 Q_t(x,\mu)\|\right) \leq K(\mathcal{T}),$

Meanwhile, $(Q_tQ_t^*)(x,\mu)$ is invertible for each $(t,x,\mu)\in [0,\infty)\times \mathbb{H}\times \mathcal{P}_2$ with

$$
\sup_{(t,x,\mu)\in[0,T]\times\mathbb{H}\times\mathcal{P}}\|(Q_tQ_t^*)(x,\mu)^{-1}\|\leq K(\mathcal{T}).
$$

Moreover, for any $x \in \mathbb{H}$, $t \geq 0$ and $\mu \in \mathcal{P}_2$, it holds

 $\lim_{n\to\infty} ||Q_t(x,\mu) - Q_t(\pi_n x, \mu)||_{\text{HS}}^2 = 0.$

In addition, for any $T > 0$, it holds

sup $\sup_{(t,x)\in[0,\mathcal{T}]\times\mathbb{H}}\|\mathcal{Q}_t(x,\mu)-\mathcal{Q}_t(x,\nu)\|_{\text{HS}}^2\leq \mathcal{K}(\mathcal{T})\mathbb{W}_2(\mu,\nu)^2,\;\;\mu,\nu\in\mathcal{P}_2.$

(a3) For any $t \in [0, T]$, b_t is continuous in $\mathbb{H} \times \mathcal{P}$. The function $t\mapsto \quad$ sup $\quad|b_t(x,\mu)|$ is locally bounded, and there exists $\phi\in \mathscr{D}$ such $(x,\mu) \in \mathbb{H} \times \mathcal{P}_2$ that

 $|b_t(x, \mu) - b_t(y, \nu)| \leq \phi(|x - y|) + K(t) \mathbb{W}_2(\mu, \nu), \quad t \geq 0, x, y \in \mathbb{H}, \mu, \nu \in \mathcal{P}_2.$

Theorem 1[X.Huang, S., NLA, '21]

Assume (a1). If $\sup_{(x,u)\in\mathbb{H}\times\mathcal{P}}(|b_t(x,\mu)|+||Q_t(x,\mu)||)$ is locally bounded with respect to t and b_t , Q_t are continuous in $\mathbb{H} \times \mathcal{P}$ for each $t \geq 0$, then for any fixed $T > 0$, and $\mu_0 \in \mathcal{P}$, Equ. [\(1\)](#page-5-0) has a weak solution up to time T with initial distribution μ_0 .

Outline of Proof:

Step 1. For each $n\geq 1$, let $\eta_n(s)=\lfloor \frac{s}{T/n}\rfloor \frac{T}{n},$ where $\lfloor \cdot \rfloor$ stands for the integer part. Let X_0 be an \mathscr{F}_0 -measurable random variable with $\mathscr{L}_{X_0} = \mu_0$. For $t \in [0, T]$, define

$$
X_t^n = e^{At}X_0 + \int_0^t e^{A(t-s)}b_s(X_{\eta_n(s)}^n, \mathscr{L}_{X_{\eta_n(s)}})ds + \int_0^t e^{A(t-s)}Q_s(X_{\eta_n(s)}^n, \mathscr{L}_{X_{\eta_n(s)}})dW_s.
$$

Step 2. Prove $\{\mathscr{L}_{X^n}\}_{n\geq 1}$ is tight in the space of probability measures on $C([0, T]; \mathbb{H})$.

Step 3. By the Skorohod representation theorem and the martingale representation theorem, there exists a complete filtered probability space $(\hat{\Omega}, \hat{\mathscr{F}}, \{\hat{\mathscr{F}}_t\}, \hat{\mathbb{P}})$, a cylindrical Brownian motion \tilde{W} and a continuous process \tilde{X} such that

$$
\tilde{X}_t=e^{At}\tilde{X}_0+\int_0^te^{A(t-s)}b_s(\tilde{X}_s,\mathscr{L}_{\tilde{X}_s}|_{\hat{\mathbb{P}}})\mathrm{d} s+\int_0^te^{A(t-s)}Q_s(\tilde{X}_s,\mathscr{L}_{\tilde{X}_s}|_{\hat{\mathbb{P}}})\mathrm{d}\tilde{\tilde{W}}_s,\quad t\in[0,\,T].
$$

Theorem 2 [X.Huang, S., NLA, '21]

Assume (a1)-(a3). Then the following assertions hold.

[\(1\)](#page-5-0) Equ.(1) has weak well-posedness in \mathcal{P}_2 and there exists a constant $C(T) > 0$ such that

$$
\int_0^T \mathbb{W}_2(P_t^*\mu_0, P_t^*\nu_0)^2 \mathrm{d}t \leq C(T)\mathbb{W}_2(\mu_0, \nu_0)^2, \quad \mu_0, \nu_0 \in \mathcal{P}_2.
$$

(2) The strong well-posedness in P_2 holds for Equ.[\(1\)](#page-5-0). Moreover, there exists an increasing function $C : [0, \infty) \to [0, \infty)$ such that for any two solutions X_t and Y_t to Equ.[\(1\)](#page-5-0), it holds

$$
\int_0^T \mathbb{E}|X_t-Y_t|^2 \mathrm{d} t \leq C(T)\mathbb{E}|X_0-Y_0|^2, \quad T\geq 0.
$$

Modified Yamada-Watanabe Principle

Consider DDSDEs on \mathbb{R}^d ,

$$
dX_t = b_t(X_t, \mathcal{L}_{X_t})dt + \sigma_t(X_t, \mathcal{L}_{X_t})dW_t
$$
\n(3)

L emma $¹$ </sup>

Assume that [\(3\)](#page-16-0) has a weak solution $\{\overline{X}_t\}_{t\in[0,T]}$ under probability $\overline{\mathbb{P}}$. If the SDE

 $dX_t = b_t(X_t, \mathscr{L}_{\overline{X}_t}|\overline{\mathbb{P}})dt + \sigma_t(X_t, \mathscr{L}_{\overline{X}_t}|\overline{\mathbb{P}})dW_t$

has strong uniqueness for some initial value X_0 with $\mathscr{L}_{X_0} = \mathscr{L}_{\overline{X}_0}|\overline{\mathbb{P}}$, then (3) has a strong solution starting at X_0 . If moreover [\(3\)](#page-16-0) has strong uniqueness for any initial value X_0 with $\mathscr{L}_{X_0}=\mathscr{L}_{\overline{X}_0}|\overline{\mathbb{P}}$, then it is weakly well-posed for the initial distribution $\mathscr{L}_{\overline{X}_0}|\overline{\mathbb{P}}$.

1. X. Huang, F.-Y. Wang, McKean-Vlasov SDEs with drifts discontinuous under Wasserstein distance., Discrete Contin. Dyn. Syst. 41(2021), no.4, 1667-1679.

Xing Huang (TJU) [DDSPDEs with Singular Drifts](#page-0-0) Apr. 25, 2021 17 / 30

Outline of Proof:

For any $\mu\in C([0,\,T], \mathcal{P}_2)$ and $X_0\in L^2(\Omega\to\mathbb{H};\mathscr{F}_0)$, the following <code>SPDE</code>

$$
dX_t = \{AX_t + b_t(X_t, \mu_t)\}dt + Q_t(X_t, \mu_t)dW_t
$$
\n(4)

has a unique mild solution. Due to Theorem 1 and the modified Yamada-Watanabe principle, we only need to prove the strong uniqueness of DDSPDEs.

For $\nu\in C([0,\,T], \mathcal{P}_2)$ and $Y_0\in L^2(\Omega\to\mathbb{H};\mathscr{F}_0)$, Y_t solve (4) with (μ,X_0) replaced by (ν, Y_0) . By the finite-dimensional approximation and Zvonkin's transform, for λ large enough it holds,

$$
\int_0^l e^{-2\lambda s} \mathbb{E}|X_s-Y_s|^2 \mathrm{d}s \leq \frac{1}{2} \int_0^l e^{-2\lambda s} \mathbb{W}_2(\mu_s,\nu_s)^2 \mathrm{d}s + c(\mathcal{T}) \mathbb{E}|X_0-Y_0|^2, \quad l \in [0,\mathcal{T}].
$$

For two solution $\hat X_t$ and $\tilde X_t$ with common initial value $\xi\in L^2(\Omega\to\mathbb H;\mathscr F_0)$,

$$
\int_0^T e^{-2\lambda s} \mathbb{E}|\hat{X}_s-\tilde{X}_s|^2 \mathrm{d}s \leq \frac{1}{2} \int_0^T e^{-2\lambda s} \mathbb{W}_2(\mathscr{L}_{\hat{X}_s}, \mathscr{L}_{\tilde{X}_s})^2 \mathrm{d}s
$$

Theorem 3 [X.Huang, S., NLA, '21]

Assume (a1)-(a3) and that $Q_t(x, \mu)$ does not depend on μ . Then the following assertions hold.

(1) There exists an increasing function $C : [0, \infty) \to (0, \infty)$ such that for any $T > 0$, the log-Harnack inequality

$$
P_T \log f(\nu_0) \leq \log P_T f(\mu_0) + \frac{C(T)}{T \wedge 1} \mathbb{W}_2(\mu_0, \nu_0)^2, \ \mu_0, \nu_0 \in \mathcal{P}_2
$$

holds for strictly positive function $f \in \mathscr{B}_b(\mathbb{H})$. Consequently, we have

$$
2\|P_T^*\mu_0 - P_T^*\nu_0\|_{\mathrm{TV}}^2 \leq \mathrm{Ent}(P_T^*\mu_0|P_T^*\nu_0) \leq \frac{C(\mathcal{T})}{\mathcal{T} \wedge 1} \mathbb{W}_2(\mu_0, \nu_0)^2.
$$

Wang's log-Harnack Inequality and Harnack Inequality

Cont.

(2) If $Q_t(x, \mu)$ does not depend on (x, μ) , the Harnack inequality with power $p > 1$ holds for non-negative $f \in \mathscr{B}_b(\mathbb{H})$ and any $T > 0$, i.e.

$$
(P_Tf(\mu_0))^p\leq P_Tf^p(\nu_0)\left(\mathbb{E}\exp\left\{\frac{p}{2(p-1)^2}\Phi(T)\right\}\right)^{p-1},\;\;\mu_0,\nu_0\in\mathcal{P}_2,
$$

where

$$
\Phi(\mathcal{T}) = \mathcal{K}(\mathcal{T}) \left(4 \mathcal{T} \phi^2 \left(|X_0 - Y_0| \right) + \mathcal{C}(\mathcal{T}) \mathbb{W}_2(\mu_0, \nu_0)^2 + 2 \frac{|X_0 - Y_0|^2}{\mathcal{T}} \right),
$$

with $\mathscr{L}_{X_0} = \mu_0$ and $\mathscr{L}_{Y_0} = \nu_0$. Consequently, $P^*_{\mathcal{T}}\mu_0$ is equivalent to $P^*_{\mathcal{T}}\nu_0$ and it holds

$$
P_{\mathcal{T}}\left\{ \left(\frac{\mathrm{d}P_{\mathcal{T}}^*\mu_0}{\mathrm{d}P_{\mathcal{T}}^*\nu_0}\right)^{\frac{1}{p-1}}\right\}(\mu_0)\leq \mathbb{E}\exp\left\{ \frac{\rho}{2(\rho-1)^2}\Phi(\mathcal{T})\right\}.
$$

Proof of Log-Harnack inequality

Outline of Proof: Let $\mu_t = P_t^* \mu_0$ and $\nu_t = P_t^* \nu_0$. Let X_t be the solution to SPDEs

$$
dX_t = AX_t dt + b_t(X_t, \mu_t) dt + Q_t(X_t) dW_t
$$
\n(5)

with $\mathscr{L}_{X_0} = \mu_0$. Define

$$
\gamma_s = Q_s^* (Q_s Q_s^*)^{-1} (X_s) [b_s(X_s, \mu_s) - b_s(X_s, \nu_s)], \qquad \bar{W}_t = W_t + \int_0^t \gamma_s \mathrm{d} s,
$$

and

$$
R_T = \exp\left\{-\int_0^T \langle \gamma_s, \mathrm{d}W_s \rangle - \frac{1}{2} \int_0^T |\gamma_s|^2 \mathrm{d}s\right\}.
$$

By (a2)-(a3) and Girsanov's theorem, $\{\bar{W}_s\}_{s\in[0,\,T]}$ is a cylindrical Brownian motion under $\mathbb{O}_T = R_T \mathbb{P}$.

Let $\bar{\mu}_t$ be the distribution of X_t under \mathbb{Q}_T , then P-a.s.

$$
\frac{\mathrm{d}\bar\mu_\mathcal{T}}{\mathrm{d}\mu_\mathcal{T}}(X_\mathcal{T})=\mathbb{E}(R_\mathcal{T}|X_\mathcal{T}).
$$

 \sim +

Next, consider the following equation on $(\Omega, \mathscr{F}, \mathbb{Q}_T)$

$$
dY_t = A Y_t dt + b(Y_t, \nu_t) dt + Q_t(Y_t) d\bar{W}_t
$$
\n(6)

If $Y_0 = X_0$, then $Y = X$. If $\mathcal{L}_{Y_0} = \nu_0$, then due to the weak uniqueness of solutions, $\mathscr{L}_{Y_t}|\mathbb{Q}_T=\nu_t.$ By Log-Harnack inequality in distribution independent SPDEs, we have

$$
\mathrm{Ent}(\nu_{\mathcal{T}}|\overline{\mu}_{\mathcal{T}}) \leq \frac{C}{\mathcal{T} \wedge 1} \mathbb{W}_2(\mu_0, \nu_0)^2.
$$

By direct calculus,

$$
P_T \log f(\nu_0) = \mu_T \left(\frac{d\bar{\mu}_T}{d\mu_T} \frac{d\nu_T}{d\bar{\mu}_T} \log f \right)
$$

\n
$$
\leq \log P_T f(\mu_0) + \mu_T \left(\frac{d\bar{\mu}_T}{d\mu_T} \frac{d\nu_T}{d\bar{\mu}_T} \log \left(\frac{d\bar{\mu}_T}{d\mu_T} \frac{d\nu_T}{d\bar{\mu}_T} \right) \right)
$$

\n
$$
= \log P_T f(\mu_0) + \bar{\mu}_T \left(\frac{d\nu_T}{d\bar{\mu}_T} \log \frac{d\bar{\mu}_T}{d\mu_T} \right) + \bar{\mu}_T \left(\frac{d\nu_T}{d\bar{\mu}_T} \log \frac{d\nu_T}{d\bar{\mu}_T} \right)
$$

\n
$$
\leq \log P_T f(\mu_0) + \log \bar{\mu}_T \left(\frac{d\bar{\mu}_T}{d\mu_T} \right) + 2\bar{\mu}_T \left(\frac{d\nu_T}{d\bar{\mu}_T} \log \frac{d\nu_T}{d\bar{\mu}_T} \right)
$$

\n
$$
\leq \log P_T f(\mu_0) + \log \mathbb{E} R_T^2 + 2\bar{\mu}_T \left(\frac{d\nu_T}{d\bar{\mu}_T} \log \frac{d\nu_T}{d\bar{\mu}_T} \right)
$$

\n
$$
\leq \log P_T f(\mu_0) + \frac{C(T)}{T \wedge 1} \mathbb{W}_2(\mu_0, \nu_0)^2
$$

Recall $\mu_t = P_t^* \mu_0$ and $\nu_t = P_t^* \nu_0$. Let X_t , Y_t solve the equations respectively $\mathrm{d}X_t = AX_t\mathrm{d}t + b_t(X_t,\mu_t)\mathrm{d}t + Q_t\mathrm{d}W_t,$ $dY_t = AY_t dt + b_t(X_t, \mu_t) dt + Q_t dW_t + e^{At} \frac{X_0 - Y_0}{T}$ $\frac{1}{T}$ ^{dt}

with $\mathscr{L}_{X_0} = \mu_0$ and $\mathscr{L}_{Y_0} = \nu_0$.

Theorem 4 [X.Huang, S., NLA,'21]

Assume (a1)-(a3). If $Q_t(x,\mu)$ does not depend on x, then for any $T > 0$, $\mu_0 \in \mathcal{P}_2$, $y \in \mathbb{H}$ and non-negative $f \in \mathscr{B}_b(\mathbb{H})$, it holds

$$
(P_Tf(\mu_0))^p \leq P_T(f^p(e^{AT}y+\cdot))(\mu_0) \exp\Big[\frac{p}{(p-1)}K(T)\Big(T\phi^2(|y|) + \frac{|y|^2}{T}\Big)\Big].
$$

Recall $\mu_t = P_t^* \mu_0$. Let X_t , Y_t solve the equations

 $dX_t = AX_t dt + b_t(X_t, \mu_t) dt + Q_t(\mu_t) dW_t, \quad \mathscr{L}_{X_0} = \mu_0,$ $dY_t = AY_t dt + b_t(X_t, \mu_t) dt + Q_t(\mu_t) dW_t + e^{At} \frac{y}{A}$ $\frac{\partial}{\partial t}dt$, $Y_0 = X_0$.

Then we have $Y_t = X_t + e^{At} \frac{ty}{T}$. In particular, $Y_T = X_T + e^{AT}y$.

Remarks

• Assume $Q_t(x, \mu) = Q_t(x)$. $\sf Strong$ well-posedness 1 : condition on the drift in the measure components can be extended to $\|\mu - \nu\|_{var.\theta} + \mathbb{W}_{\theta}(\mu, \nu)$ for some $\theta \geq 1$. Note that $\mathbb{W}_k(\mu, \nu)^{k \vee 1} \leq \mathsf{c}(k) \| \mu - \nu \|_{\mathsf{var}, k}, k > 0$ and $\|\mu-\nu\|_{\mathsf{var},k_1} \leq (2-\tfrac{k_1}{k_2})$ $\frac{k_1}{k_2}$]|| $\mu - \nu$ ||_{var, k</sup>2}, 0 < k₁ \leq k₂. Log-Harnack inequality $^2\colon\mathbb{W}_2$ can be extended to $\mathbb{W}_k+\mathbb{W}_2$ some $k \in (0, 1)$.

$$
P_T \log f(\nu_0) \leq \log P_T f(\mu_0) + \frac{C(T)}{T \wedge 1} \mathbb{W}_2(\mu_0, \nu_0)^2, \ \mu_0, \nu_0 \in \mathcal{P}_2
$$

1. F.-Y. Wang, Distribution dependent reflecting stochastic differential equations, arXiv:2106.12737.

2. X. Huang, F.-Y. Wang, Log-Harnack Inequality and Bismut Formula for Singular McKean-Vlasov SDEs, arXiv:2207.11536.

Remarks

• Assume $Q_t(x, \mu) = Q_t(\mu)$.

Strong well-posedness: condition on the drift in the measure components can be extended to $\|\mu - \nu\|_{var,\theta} + \mathbb{W}_{\theta}(\mu, \nu)$ for some $\theta \geq 1$.

Log-Harnack inequality¹: *b* is not bounded and

$$
|b_t(x,\mu)-b_t(x,\nu)|\leq C[|x-y|+\mathbb{W}_2(\mu,\nu)],\ \ K\leq QQ^*\leq K^{-1}.
$$

Then

$$
P_{\mathcal{T}}\log f(\nu_0)\leq \log P_{\mathcal{T}}f(\mu_0)+\frac{C(\mathcal{T})}{\mathcal{T}\wedge 1}\mathbb{W}_2(\mu_0,\nu_0)^2,\ \mu_0,\nu_0\in \mathcal{P}_2
$$

Idea: $QQ^* = K + [QQ^* - K]$. However, singular drift can be not dealt with.

1. X. Huang, F.-Y. Wang, Regularities and Exponential Ergodicity in Entropy for SDEs Driven by Distribution Dependent Noise, arXiv:2209.14619.

Xing Huang (TJU) [DDSPDEs with Singular Drifts](#page-0-0) Apr. 25, 2021 27 / 30

• Assume $Q_t(x, \mu) = Q_t(x, \mu)$. In finite case, \sf{Strong} well-posedness 1 : condition on drift in the

measure components can be extended to $\|\mu - \nu\|_{var,\theta} + \mathbb{W}_{\theta}(\mu, \nu)$ for some $\theta > 1$. Log-Harnack inequality: Open problem, even in finite case.

1. X. Huang, F.-Y. Wang, Singular McKean-Vlasov (reflecting) SDEs with distribution dependent noise. J. Math. Anal. Appl. 514 (2022), no. 1, Paper No. 126301, 21 pp.

References

N.U. Ahmen, X. Ding, A semilinear McKean-Vlasov stochastic evolution equation in Hilbert space, Stochastic Process. Appl. 60(1995) 65-85.

X. Huang, F.-Y. Wang, McKean-Vlasov SDEs with Drifts Discontinuous under Wasserstein Distance, arXiv:2002.06877.

- M. Röckner, X. Zhang, Well-posedness of distribution dependent SDEs with singular drifts, to appear in Bernoulli, arXiv:1809.02216.
- 譶 F.-Y. Wang, Harnack Inequality and Applications for Stochastic Partial Differential Equations, Springer, New York, 2013.

- F.-Y. Wang, Gradient estimate and applications for SDEs in Hilbert space with multiplicative noise and Dini continuous drift, J. Differential Equations 260(2016), 2792-2829.
- F.
	- F.-Y. Wang, T. Zhang, Log-Harnack inequalities for semilinear SPDE with strongly multiplicative noise, Stoch. Proc. Appl. 124(2014), 1261-1274.

Thank You for Your Attention !